800 MHz Interference In Denver, CO

September 16, 2003

Prepared by

Pericle Communications Company 1910 Vindicator Drive, Suite 100 Colorado Springs, CO 80919

For

The Federal Communications Commission

Outline

- The Denver/Nextel Problem
 - Nature of the interference
 - Techniques used to mitigate it
 - Relative success of the effort
- AT&T's Contribution to the Problem
 - Why it occurs
 - Extent of AT&T's contribution
- Why "Technical Toolbox" is Inadequate

The Denver Problem

Denver Public Safety Radio

Frequencies

- Public Safety: 33 channels, 854-861, 866-869 MHz
- Utilities: 15 channels (25 kHz), 854-861 MHz

Equipment

- MA/COM EDACS Trunked Radio System/Analog FM
- Activated 1989

Site

Main transmitter site on Mt. Morrison (7,750' AMSL)

Denver 800 MHz Band

Background

- Problem Discovered in Feb 2000 Following Officer Complaints
- Discovered Nextel Cell Site Near Each Location
- Eventually 24 Sites Identified
- Two Main Problems:
 - Receiver Intermodulation in Public Safety Receiver
 - Transmitter out -of-band emissions from Nextel transmitter
- Actions Taken & Proposed
 - Near-term: mitigation
 - Long-term: a phased channel swap and re-banding

Problem Mitigation Intermodulation (IM) Protection

Actions

- "Tune" Nextel site to preclude harmful IM products
- Practically, only some Denver channels can be protected
- Control channel is most important
- Limit control channels to first five RF channels
- Nextel protects just these five channels

Results

Effective at roughly 18 of 24 problem sites

Limitations

- Only control channels are protected
- Voice channels still experience interference
- System often assigns user to a bad voice channel (one with IM)
- Nextel limited in use of their spectrum

Public Safety Receiver

- At low levels, IM rejection driven by mixer performance
- At high levels (> -40 dBm), IM rejection driven by LNA
- Bandpass Filter Passes All of SMR, Most of A-Band Cellular

Filter Comparison

(Public Safety Receiver)

Problem Mitigation Transmitter Out of Band Emissions (OOBE)

Actions

- Nextel installed auto-tune cavity combiners
- Greater filter selectivity reduces out-of-band emissions

Results

- Effective when channel separation is wide enough
- Limitations
 - Not effective for closely spaced frequencies (< 150 kHz)

Filter Comparison

(Nextel Transmitter Combiner)

Problem Mitigation Antenna Patterns

- Actions
 - Nextel installed antennas with reduced downward radiation
- Results
 - Reduces Nextel signal level on the street
 - Intermodulation products reduced by roughly 3 to 1 ratio in dB
- Limitations
 - Signal still too strong at some locations
 - Some loss of indoor coverage close-in for Nextel

AT&T Wireless

Problem Statement

- After Mitigation, Six Sites Remained a Serious Problem*
 - Five of the six were co-located Nextel/AT&T Wireless
 - Mathematically, AT&T can contribute to receiver IM
 - IM can be AT&T alone (NPSPAC mostly) or with Nextel
- Task: Determine if AT&T is Contributing to Problem

^{*}These are the "red" sites. Denver also has lesser problems at several "yellow" sites.

Observations - AT&T

- Factors Contributing to Interference
 - AT&T is adjacent to NPSPAC band (869-880, 890-891.5 MHz)
 - Numerous theoretical IM "hits" on Denver NPSPAC channels
 - Numerous "hits" with Nextel frequencies in 855 MHz region
 - Denver receivers do not attenuate below 875 MHz
 - AT&T base stations pass transmitter noise below 869 MHz
- Mitigating Factors
 - Signal levels on street are lower than Nextel (in general)
 - Location in 800 MHz band limits AT&T 3rd order products
 - Most likely products are combinations with Nextel
 - Frequencies above 875 MHz attenuated (for some radios)
 - Transmitters not keyed continuously

Example: Yale & Colorado

AT&T Site (West Side, north of Fire House)

Denver Fire House (West Side)

Yale & Colorado

On-Off Testing

- First, Conduct Intermodulation (IM) Study
 - Consider all 3rd order products with AT&T & Nextel
 - Only first five Denver channels considered (control channels)
- Second, Use IM Study to Configure On-Off Test
 - Limit keyed AT&T frequencies so only known IM products occur
 - I.e., assures cause and effect conclusion is correct
- Finally, Walk the Area Under On and Off Conditions
 - Verifies that AT&T is or is not a contributor

AT&T Results

- AT&T Wireless Contributes to Receiver IM
 - Predicted mathematically, confirmed by On-Off tests
- Most IM Products Require Nextel Also
 - I.e., IM that falls on five control channels
- Note: Does not Include NPSPAC Interference
 - NPSPAC (866-869 MHz) does occur with AT&T alone

Why The "Technical Toolbox" is Inadequate

The "Technical Toolbox"

- Tools Already In Service in Denver:
 - IM Tuning at Nextel Sites
 - Auto-tune cavity combiners
 - Antennas with less downward radiation
- Varactor Bandpass Filters
- Switchable Attenuator
- Why Can't These Tools Do the Job Without Re-banding?

The "Technical Toolbox"

IM Tuning

- Limits Nextel's frequency choices too much
- Only practical to protect a handful of frequencies (control ch's)
- At congested sites, we still have strong IM on traffic channels
- Nextel alone can't control the Nextel/AT&T mixes

Auto-Tune Cavity Combiners

- Cavities have finite isolation
- Not good for close-in channels (< 150 kHz)
- Further limits Nextel's frequency choices

Antenna Patterns

- See REMEC FCC comments
- They have right idea, but we are already doing this

Antenna Used in Denver

Antenna Issues

- Tried Sidelobe Suppression at Two Sites:
 - City Bank, 8-10 stories high, good results
 - 14th & Market, ~ 3 stories high, not effective
- Only works on relatively high sites (look down angle issue)
- Higher gain, narrower beamwidth antennas best
 - High gain antennas are taller
 - But zoning restrictions limit antenna height

It's Usually the Low Site (Alameda & Federal)

Nextel

Another
Low Site
(48th & Elm)

The "Technical Toolbox"

- Varactor-Tuned Bandpass Filters
 - Motorola suggestion
 - Good idea, but cannot help if channels are interleaved
- Switchable Attenuator
 - Motorola suggestion
 - Cannot distinguish between IM and receiver overload
 - In most cases, will unnecessarily degrade sensitivity by 15 dB
 - But the problem occurs at -90 to -110 dBm
 - Cannot afford a 15 dB hit in sensitivity at these levels
 - Introduces complex signal estimation problems
 - Still a research project, not a field tested product

Why Denver Needs Re-Banding

- Denver Has Tried the "Technical Toolbox" for 3 Years
 - Only partial improvements
 - These are stop-gap measures
- The Problem Will Only Get Worse
 - Nextel & AT&T will continue to build sites with low antenna heights
- Only Re-Banding will Solve the OOBE Issue
- Receiver Technology Will Not Save Us
 - Amplifier & mixer technology is mature
 - No significant advances on the horizon
- Filtering at Receivers & Transmitters Only Effective w/Re-Banding

Points of Contact

Jay M. Jacobsmeyer, P.E.
Pericle Communications Company
1910 Vindicator Drive, Suite 100
Colorado Springs, CO 80919
(719) 548-1040
Fax: (719) 548-1211
jacobsmeyer@pericle.com

George W. Weimer, P.E.
Trott Communications Group, Inc.
1425 Greenway Drive, Suite 350
Irving, TX 75038
(972) 580-1911
Fax: (972) 580-0641
george.weimer@trottgroup.com